Создан оптический датчик, способный имитировать человеческий глаз

Тренды ретинальных имплантов: основные фундаментальные технологии

Ретинальные нанотрубки

Группа ученых из Китая (Shanghai Public Health Clinical Center) в 2018 году провела эксперимент на мышах, в ходе которого вместо не функционирующих фоторецепторов сетчатки предложила использовать нанотрубки. Преимущество этого проекта — маленький размер нанотрубок. Каждая из них может стимулировать только несколько клеток сетчатки.

Биопиксели

Группа ученых из Оксфорда стремится сделать протез максимально приближенным к естественной сетчатке. Биопиксели в проекте выполняют функцию, схожую с настоящими клетками. Они имеют оболочку из липидного слоя, в который встроены фоточувствительные белки. На них воздействуют кванты света и как в настоящих клетках изменяется электрический потенциал, возникает электрический сигнал.

Перовскитная искусственная сетчатка

Все предыдущие фундаментальные разработки направлены на стимулирование всех слоев живых клеток. При помощи технологии перовскитной искусственной сетчатки китайские ученые пытаются предоставить возможность не только получать световые ощущения, но и различать цвет за счет моделирования сигнала таким образом, чтобы он воспринимался мозгом как имеющий определенную цветность.

Фотогальваническая пленка Polyretina

В Polyretina используется маленькая пленка, покрытая слоем химического вещества, которое имеет свойство поглощать свет и конвертировать его в электрический сигнал. Пленка размещена на сферическом основании, чтобы можно было удобно разместить ее на глазном дне.

Фотогальванический имплант Polyretina

(Фото: Nature Communications)

Субретинальное введение полупроводникового полимера

Итальянские ученые предлагают технологию введения полупроводникового полимерного раствора под сетчатку, при помощи которого свет фиксируется и трансформируется в электрические сигналы.

Зрительный нерв (проводящие пути)

Сетчатка глаза является первичным нервным центром обработки зрительной информации. Место выхода из сетчатки зрительного нерва называется диском зрительного нерва (слепое пятно). В центре диска в сетчатку входит центральная артерия сетчатки. Зрительные нервы проходят в полость черепа через каналы зрительных нервов.

На нижней поверхности головного мозга образуется перекрест зрительных нервов — хиазма, но перекрещиваются только волокна, идущие от медиальных частей сетчаток. Эти перекрещивающиеся зрительные пути называются зрительными трактами. Большинство волокон зрительного тракта устремляются в латеральное коленчатое тело, головного мозга. Латеральное коленчатое тело имеет слоистое строение и названо так потому, что его слои изгибаются наподобие колена. Нейроны этой структуры направляют свои аксоны через внутреннюю капсулу, затем в составе зрительной радиации к клеткам затылочной доли коры больших полушарий возле шпорной борозды. По этому пути идет информация только о зрительных стимулах.

Где используют

Датчики присутствия человека позволяют экономить энергию. При эксплуатации в помещении потребление электричества снижается на 40-55%. Освещение включается только при наличии объекта. В паре с детекторами движения устройства обеспечивают безопасность на производстве. Техника деактивирует станок или конвейер при возможности травмирования работника.

Датчики присутствия – обязательные элементы «умного дома». Оборудование функционирует не только со светом, но и управляет кондиционером или отоплением. Опции включаются в присутствии владельца и прекращают работать при выходе из зоны слежения. Многозадачность приборов контролирует температуру бассейна или предупреждает о постороннем на территории.


Система “умный дом”Источник datchikidoma.ru

Противопожарный датчик присутствия реагирует при малейшем задымлении в доме. Детектор дождя управляет поливом на участке и закрывает окна в отсутствии владельца. Сантехнические модели используют для контроля за протечками. Элементы монтируют в санузле и на кухне. При аварии или забытом кране оборудование отправит предупреждение хозяину. 

Как устроен датчик движения (присутствия).

Первые ретинальные импланты

Пару лет назад на рынке было доступно три ретинальных импланта, которые прошли клинические испытания и были сертифицированы государственными регулирующими органами: европейским CE Mark и американским FDA.

  • Second Sight Medical Products, США
  • Pixium Vision, Франция
  • Retina Implant AG, Германия

Так выглядели первые ретинальные импланты

(Фото: DPG Media)

Бионические импланты — это целая система внешних и внутренних устройств.

IRIS II (Pixium Vision) и Argus II (Second Sight) имели внешние устройства (очки с видеокамерой и блок обработки видеосигнала). Слепой человек смотрит при помощи камеры, с нее картинка направляется в процессор, где изображение обрабатывается и распадается на 60 пикселей (для системы Argus II). Затем сигнал направляется через трансмиттер на электродную решетку, вживленную на сетчатке, и электрическим током стимулируются оставшиеся живые клетки.

В немецком импланте Alfa АMS (Retina Implant) нет внешних устройств, и человек видит своим собственным глазом. Имплант на 1600 электродов вживляется под сетчатку. Свет через глаз попадает на светочувствительные элементы и происходит стимуляция током. Питается имплант от подкожного магнитного коннектора.

Субретинальный имплантат Alpha AMS компании Retina Implant AG

(Фото: ResearchGate)

Все три ретинальных импланта больше не производятся, так как появилось новое поколение кортикальных протезов (для стимуляции коры головного мозга, а не сетчатки глаза). Однако хотя проектов по фундаментальным разработкам по улучшению ретинальных имплантов еще много, ни один из них не прошел клинические испытания:

  • Улучшенный имплант DRY AMD PRIMA компании Pixium с увеличением количества электродов для стимуляции большего количества клеток сетчатки проходит клинические испытания. Для участия в программе испытаний еще ищут пять кандидатов;
  • Retina Implant AG закрыли производство;
  • Second Sight проводят клинические испытания своего кортикального импланта, но в марте 2020 года компания уволила 80% сотрудников из эксплуатационно-производственного подразделения.

Опыты

Команда Университета штата Орегон приступила к моделированию набора датчиков, которые будут предсказывать, как система отреагирует на различные визуальные стимулы. Суть метода заключалась в том, чтобы вводить видео в один из массивов и обрабатывать эту информацию по тому же принципу, что и человеческий глаз. К примеру, такая симуляция может демонстрировать полет птицы и ее исчезновение в районе невидимой кормушки. После этого птица снова поднимается в воздух. Кормушка же начинает быть видимой только после того, как птица придает ей импульс, и она начинает раскачиваться. Чтобы распознать такое действие, важен не только сам датчик, но и вычислительная мощность.

Строение глаза. Вспомогательный аппарат глаза

Глаз — находится в орбитальной впадине черепа — в глазнице, сзади и с боков окружён мышцами, которые его двигают. Он состоит из глазного яблока со зрительным нервом и вспомогательных аппаратов.

Глаз — самый подвижный из всех органов человеческого организма. Он совершает постоянные движения, даже в состоянии кажущегося покоя. Мелкие движения глаз (микродвижения) играют значительную роль в зрительном восприятии. Без них невозможно было бы различать предметы. Кроме того, глаза совершают заметные движения (макродвижения) — повороты, перевод взора с одного предмета на другой, слежение за движущимися предметами. Различные движения глаза, повороты в стороны, вверх, вниз обеспечивают глазодвигательных мышцы, расположенные в глазнице. Всего их шесть. Четыре прямые мышцы крепятся к передней части склеры — и каждая из них поворачивает глаз в свою сторону. А две косые мышцы, верхняя и нижняя, прикрепляются к задней части склеры. Согласованное действие глазодвигательных мышц обеспечивает одновременный поворот глаз в ту или иную сторону.

Орган зрения нуждается в защите от повреждений для нормального развития и работы. Защитными приспособлениями глаз являются брови, веки и слёзная жидкость.

Бровь — парная дугообразная складка толстой кожи, покрытая волосами, в которую вплетаются лежащие под кожей мышцы. Брови отводят пот со лба и служат для защиты от очень яркого света. Веки закрываются рефлекторно. При этом они изолируют сетчатку от действия света, а роговицу и склеру — от каких-либо вредных воздействий. При моргании происходит равномерное распределение слёзной жидкости по всей поверхности глаза, благодаря чему глаз предохраняется от высыхания. Верхнее веко больше, чем нижнее, и его поднимает мышца. Веки закрываются за счёт сокращения круговой мышцы глаза, имеющей циркулярную ориентацию мышечных волокон. По свободному краю век располагаются ресницы, которые защищают глаза от пыли и слишком яркого света.

Слёзный аппарат. Слёзная жидкость вырабатывается специальными железами. Она содержит 97,8% воды, 1,4% органических веществ и 0,8% солей. Слёзы увлажняют роговицу и способствуют сохранению её прозрачности. Кроме того, они смывают с поверхности глаза, а иногда и век попавшие туда инородные тела, соринки, пыль и т.п. В слёзной жидкости содержатся вещества, убивающие микробов через слёзные канальцы, отверстия которых расположены во внутренних уголках глаз, попадает в так называемый слёзный мешок, а уже отсюда — в носовую полость.

Глазное яблоко имеет не совсем правильную шаровидную форму. Диаметр глазного яблока составляет примерно 2,5 см. В движении глазного яблока принимает участие шесть мышц. Из них четыре прямые и две косые. Мышцы лежат внутри глазницы, начинаются от её костных стенок и прикрепляются к белочной оболочке глазного яблока позади роговицы. Стенки глазного яблока образованы тремя оболочками.

Argus II

Этот бионический глаз был разработан и сделан в США компанией «Ясновидение». 130 пациентов с заболеванием пигментный ретинит воспользовались его возможностями. Argus II состоит из двух частей: встроенной в очки мини-видеокамеры и имплантата. Все объекты окружающего мира фиксируются на камеру и передаются в имплантат через процессор по беспроводной связи. Ну а имплантат с помощью электродов активирует имеющиеся у больного клетки сетчатки, отправляя информацию прямиком в зрительный нерв.

Пользователи бионического глаза уже через неделю чётко различают горизонтальные и вертикальные линии. В дальнейшем качество зрения через это устройство только возрастает. Argus II стоит 150 тысяч фунтов стерлингов. Однако исследования не прекращаются, так как разработчики получают различные денежные гранты. Естественно, искусственные глаза ещё довольно несовершенны. Но учёные делают всё, чтобы качество передаваемой картинки улучшилось.

От неврологии к зрительному механизму

Убеждение, что многие функции человека контролируются головным мозгом, разделяют
неврологи с начала XIX века. Мнения разнились по вопросу, используются ли определенные
части коры головного мозга для выполнения отдельных операций или для каждой операции
задействуется весь мозг целиком. Сегодня знаменитый эксперимент французского невролога
Пьера Поля Брока (Pierre Paul Broca) привел к всеобщему признанию теории специфического
расположения. Брока лечил пациента, который не мог говорить 10 лет, хотя с голосовыми
связками у него было все в порядке. Когда человек умер в 1861 году, вскрытие показало,
что левая часть его мозга была деформирована. Брока сделал предположение, что речь
контролируется этой частью коры головного мозга. Его теория была подтверждена
последующими обследованиями пациентов с повреждениями головного мозга, что позволило,
в конечном итоге, отметить центры жизненно важных функций человеческого мозга.

Рисунок 9. Отклик двух разных клеток мозга на оптические возбудители разных направлений

Столетием позже, в 1950-х годах, ученые Д.Х. Хьюбел (D.H. Hubel) и Т.Н. Визель (T.N. Wiesel)
провели эксперименты в мозгом живых обезьян и кошек. В зрительном центре коры головного
мозга они обнаружили нервные клетки, которые особенно чувствительны к горизонтальным,
вертикальным и диагональным линиям в поле зрения (рис. 9). Их сложная техника
микрохирургии была впоследствии принята к применению другими учеными.

Таким образом,
кора головного мозга не просто содержит в себе центры для выполнения различных функции,
но и внутри каждого центра, как, например, в зрительном центре, отдельные нервные клетки
активируются только при поступлении очень специфических сигналов. Эти сигналы поступающие
с сетчатки глаза, коррелируют с четко определенными ситуациями внешнего мира. Сегодня
предполагается, что информация о различных формах и пространственном расположении
объектов содержится в зрительной памяти, и информация от активированных нервных клеток
сравнивается с этой хранимой информацией.

Эта теория детекторов повлияла на направление в исследованиях зрительного восприятия в
середине 1960-х годов. Тем же самым путем последовали и ученые, связанные с
“искусственным интеллектом”. Компьютерная симуляция процесса человеческого
зрения, также называемое “машинное зрение”, рассматривалась как одна из наиболее легко
достижимых целей в данных исследованиях. Но все сложилось несколько иначе. Скоро стало
ясно, что фактически невозможно написать программы, которые были бы способны распознавать
изменения интенсивности света, тени, структуру поверхности и беспорядочные наборы сложных
объектов в значащие образы. Более того, такое распознавание образов потребовало
неограниченных объемов памяти, так как изображения несчетного числа объектов необходимо
хранить в памяти в бессчетном количестве вариаций расположения и ситуаций освещения.

Какие-либо дальнейшие продвижения в области распознавания образов в условиях реального
мира не представлялись возможными. Вызывает сомнение надежда, что когда-либо компьютер
сможет симулировать человеческий мозг. В сравнении с человеческим мозгом, в котором
каждая нервная клетка имеет порядка 10 000 связей с другими нервными клетками,
эквивалентное компьютерное соотношение 1:1 едва ли выглядит адекватным!

Рисунок 10. Разгадка фигуры Делленбаха

Лекция Элизабет Уоррингтон (Elizabeth Warrington)

В 1973 году Марр посетил лекцию британского невролога Элизабет Уоррингтон. Она отметила, что большое количество пациентов с париетальными повреждениями правой части мозга, которых она осмотрела, могли отлично распознавать и описывать множество объектов при условии, что эти объекты наблюдались ими в их обычном виде. Например, такие пациенты без особого труда идентифицировали ведро при виде сбоку, но не были способны распознать то же самое ведро при виде сверху. На самом деле, даже когда им говорили, что они смотрят на ведро сверху, они наотрез отказывались в это поверить! Еще более удивительным было поведение пациентов с повреждениями левой части мозга. Такие пациенты, как правило, не могут разговаривать, и, следовательно, вербально не могут назвать предмет, на который они смотрят, или описать его назначение. Тем не менее, они могут показать, что они правильно воспринимают геометрию предмета независимо от угла обзора. Это побудило Марра написать следующее: “Лекция Уоррингтон подтолкнула меня к следующим выводам. Во-первых, представление о форме объекта хранится в каком-то другом месте мозга, поэтому так сильно отличаются представления о форме предмета и его назначении. Во-вторых, зрение само может предоставить внутреннее описание формы наблюдаемого объекта, даже если этот объект не распознается обычным образом… Элизабет Уоррингтон указала на наиболее существенный факт человеческого зрения – оно говорит о форме, пространстве и взаимном расположении объектов.” Если это действительно так, то ученые, работающие в области зрительного восприятия и искусственного интеллекта (в том числе и те, кто работают в области машинного зрения) должны будут поменять теорию детекторов из экспериментов Хьюбела на совершенно новый набор тактик.

Во всем виноваты динозавры

В незапамятные времена на Земле господствовали давние предки млекопитающих, но их эра прервалась чередой геологических катастроф, что привело к тому, что хозяевами Земли стали динозавры. Эта передача «пальмы первенства» сильно усложнила выживание млекопитающих: им пришлось приспособиться к ночному образу жизни и переместиться в лесную подстилку. В связи с этим ранее присущее млекопитающим трёхкомпонентное зрение потеряло свою актуальность и исчезло, но взамен улучшилось сумеречное. Время шло, и как это бывает, настал конец и эре динозавров, что позволило млекопитающим вновь занять нишу доминирующих на планете существ. Наследие от жалкой, лишённой красок жизни во тьме, однако, осталось, поэтому почти все млекопитающие – “дальтоники”.

Бионический глаз в России

Первым пациентом, которому в нашей стране вживили устройство, стал 59-летний челябинец Александр Ульянов. Операция шла на протяжении 6 часов в Научно-клиническом центре оториноларингологии ФМБА. За периодом реабилитации пациента следили лучшие офтальмологи страны. На протяжении этого времени в установленный Ульянову чип регулярно пускали электрические импульсы и отслеживали реакцию. Александр показывал отличные результаты.

Конечно, он не различает цветов и не воспринимает многочисленные объекты, доступные здоровому глазу. Окружающий мир Ульянов видит размыто и в чёрно-белом цвете. Но и этого ему достаточно для абсолютного счастья. Ведь последние 20 лет мужчина вообще был слепым. А сейчас его жизнь полностью изменил установленный бионический глаз. Стоимость операции в России составляет 150 тыс. рублей. Ну и плюс цена самого глаза, которая была указана выше. Пока устройство выпускают только в Америке, но со временем в России должны появиться аналоги.

Обратная связь

Отрицательный синапс

  • Первая гипотеза: горизонтальные клетки секретируют ГАМК, гиперполяризуя мембраны колбочек.
  • Вторая гипотеза связана с эфапсами (эфаптическими механизмами): она предполагает, что электрические токи через каналы в дендритах горизонтальных клеток локально изменяют трансмембранный потенциал на терминалях колбочек. Предполагается, что с помощью эфапсов опосредуется отрицательная обратная связь и модулируется мощностью сигнала колбочек.
  • Последняя гипотеза связывает описанные эффекты с эффлюксом протонов, возникающим при деполяризации горизонтальных клеток, при котором происходит закисление межклеточной среды, что ингибирует мембранные потенциал-зависимые кальциевые каналы в колбочках.

История создания зрительного протеза

Немецкий психолог Иоганн Пуркинье в 1823 году заинтересовался вопросами зрения и галлюцинаций, а также возможностью искусственной стимуляции зрительных образов. Принято считать, что именно он впервые описал зрительные вспышки — фосфены, которые он получил при проведении простого опыта c аккумулятором, пропуская через голову электрический ток и описывая свой визуальный опыт.

Спустя 130 лет, в 1956 году, австралийский ученый Дж. И. Тассикер запатентовал первый ретинальный имплант, который не давал какого-то полезного зрения, но показал, что можно искусственно вызывать зрительные сигналы.

Ретинальный имплант (имплант сетчатки) «вводит» визуальную информацию в сетчатку, электрически стимулируя выжившие нейроны сетчатки. Пока вызванные зрительные восприятия имели довольно низкое разрешение, но достаточное для распознавания простых объектов.

Но глазное протезирование долго тормозилось из-за технологических ограничений. Прошло очень много времени, прежде чем появились какие-то реальные разработки, которые смогли дать «полезное зрение», то есть зрение, которым человек мог бы воспользоваться. В 2019 году в мире насчитывалось около 50 активных проектов, фокусирующихся на протезировании зрения.

Оболочки глаза

Снаружи оно покрыто белочной оболочкой (склерой). Она самая толстая, прочная и обеспечивает глазному яблоку определённую форму. Склера составляет приблизительно 5/6 часть наружной оболочки, она непрозрачна, белого цвета и частью видна в пределах глазной щели. Белковая оболочка — очень прочная соединительнотканная оболочка, которая покрывает весь глаз и защищает его от механических и химических повреждений.

Передняя часть этой оболочки прозрачная. Она называется — роговицей. Роговица имеет безупречную чистоту и прозрачность благодаря тому, что постоянно протирается мигающим веком и промывается слезой. Роговица — единственное место в белковой оболочке, через которое внутрь глазного яблока проникают лучи света. Склера и роговица — довольно плотные образования, обеспечивающие глазу сохранение формы и предохранение его внутренней части от различных внешних вредных воздействий. За роговицей находится кристально прозрачная жидкость.

Изнутри к склере прилегает вторая оболочка глаза — сосудистая. Она обильно снабжена кровеносными сосудами (выполняет питательную функцию) и пигментом, содержащим красящее вещество. Передняя часть сосудистой оболочки называется радужной. Находящийся в ней пигмент обусловливает цвет глаз. Окраска радужки зависит от количества пигмента меланина. Когда его много — глаза тёмно- или светло-карие, а когда мало — серые, зеленоватые или голубые. Людей с отсутствием меланина называют альбиносами. В центре радужки есть небольшое отверстие — зрачок, который, суживаясь или расширяясь, пропускает, то больше, то меньше света. Радужка отделяется от собственно сосудистой оболочки ресничным телом. В толще его находится ресничная мышца, на тонких упругих нитях которой подвешен — хрусталик — прозрачное тело, похожее на лупу, крошечная двояковыпуклая линза диаметром 10 мм. Он преломляет лучи света и собирает их в фокусе на сетчатке. При сокращении или расслаблении ресничной мышцы хрусталик меняет свою форму — кривизну поверхностей. Это свойство хрусталика позволяет чётко видеть предметы как на близком, так и на далёком расстоянии.

Третья, внутренняя оболочка глаза — сетчатая. Сетчатка имеет сложное строение. Она состоит из светочувствительных клеток — фоторецепторов и воспринимает свет, поступающий в глаз. Она расположена только на задней стенке глаза. В сетчатке различают десять слоёв клеток

Особенно важное значение имеют клетки, получившие название колбочек и палочек. В сетчатой оболочке палочки и колбочки расположены неравномерно

Палочки (около 130 млн.) отвечают за восприятие света, а колбочки (около 7 млн.) — за цветовое восприятие.

Палочки и колбочки имеют в зрительном акте различное назначение. Первые работают на минимальном количестве света и составляют сумеречный аппарат зрения; колбочки же действуют при больших количествах света и служат для дневной деятельности аппарата зрения. Различная функция палочек и колбочек обеспечивает высокую чувствительность глаза к очень высоким и низким освещенностям. Способность глаза приспосабливаться к разной яркости освещения называется адаптацией.

Глаз человека способен различать бесконечное разнообразие цветовых оттенков. Восприятие многообразия цветов обеспечивают колбочки сетчатки. Колбочки чувствительны к цветам только при ярком свете. При слабом освещении восприятие цветов резко ухудшается, и все предметы в сумерках кажутся серыми. Колбочки и палочки действуют вместе. От них отходят нервные волокна, образующие затем зрительный нерв, выходящий из глазного яблока и направляющийся в головной мозг. Зрительный нерв состоит примерно из 1 млн. волокон. В центральной части зрительного нерва проходят сосуды. В месте выхода зрительного нерва палочки и колбочки отсутствуют, вследствие чего свет этим участком сетчатки не воспринимается.

Различимость и детальность

Большинство современных цифровых камер имеют 5-20 мегапикселей, что зачастую преподносится как полный провал по сравнению с нашим собственным зрением. Это основано на том факте, что при идеальном зрении человеческий глаз по разрешающей способности эквивалентен 52-мегапиксельной камере (принимая за угол зрения 60°).

Однако эти подсчёты вводят в заблуждение. Лишь наше центральное зрение может быть идеальным, так что в действительности мы никогда не достигаем такой детальности за один взгляд. По мере удаления от центра наши зрительные способности драматически падают — настолько, что всего на 20° от центра наши глаза различают уже всего одну десятую от исходной детальности. На периферии мы обнаруживаем только крупномасштабный контраст и минимум цветов:

Качественное представление визуальной детальности одного взгляда.

Принимая это во внимание, можно утверждать, что один взгляд наших глаз способен различать детали всего лишь сравнимые с 5-15 мегапикселями камеры (в зависимости от зрения). Однако наше сознание в действительности не запоминает образы попиксельно; оно записывает памятные детали, цвет и контраст для каждого изображения по-разному

В результате, чтобы воссоздать детальный зрительный образ, наши глаза фокусируются на нескольких представляющих интерес предметах, быстро их чередуя. Вот наглядное представление нашего восприятия:

 
исходная сцена предметы интереса

Конечным результатом является зрительный образ, детальность которого эффективно приоритизируется на основе интереса

Из этого следует важное для фотографов, но часто оставляемое без внимания свойство: даже если снимок максимально использует всю технически возможную детальность камеры, эта детальность не будет иметь особого значения, если сам по себе снимок не содержит ничего запоминающегося

К прочим важным отличиям того, как наши глаза различают детали, относятся:

Асимметрия. Каждый глаз способен воспринимать больше деталей ниже линии зрения, чем выше, а периферийное зрение гораздо более чувствительно по направлению от носа. Камеры снимают изображения абсолютно симметрично.

Зрение при слабом свете. В условиях очень слабого света, например, лунного или звёздного, наши глаза фактически начинают видеть монохромно. В таких ситуациях наше центральное зрение к тому же становится менее зорким, чем слегка в сторону от центра. Многие астрофотографы в курсе этого и извлекают из этого преимущества, глядя чуть в сторону от неяркой звезды, если хотят разглядеть её невооружённым глазом.

Малые градации

Различимости малейших деталей зачастую уделяется чрезмерное внимание, однако малые тональные градации тоже важны — и похоже, именно по этой части наши глаза и камеры отличаются сильнее всего. Для камеры увеличенную деталь всегда легче передать на снимке — а вот для наших глаз, хоть это и противоречит интуиции, увеличение детали может сделать её менее видимой

На следующем примере оба изображения содержат текстуру с одинаковым контрастом, однако на изображении справа она не видна, поскольку была увеличена.

→больше в 16 раз
мелкая текстура(едва видна)  грубая текстура(не видна)
Поделитесь в социальных сетях:FacebookX
Напишите комментарий