Расчет искусственного освещения. Нормирование и расчет искусственного освещения

Подробный расчет мощности люминесцентного освещения

Учитывая возросший спрос инженеров на способы расчета мощности системы освещения, выполненного с использованием энергосберегающих светильников, ниже мы приведем одну из таких методик, которая, на наш взгляд, наиболее проста и понятна для неспециалистов в области электроснабжения и освещения.

Мощность системы освещения (Вт) для конкретного помещения выражается формулой

Nосв=(E ∙ S ∙ Kзап ∙ Nл)/(U ∙ Фл),

где:

Е — ​требуемая горизонтальная освещенность, лк (определяется по нормативным документам; для офисных помещений можно принимать Е = 300 лк);

S — ​площадь помещения, м2;

Кзап — ​коэффициент запаса для учета снижения светового потока от ламп в процессе эксплуатации, загрязнения светильников и других факторов; рекомендуется принимать Кзап = 1,4;

U — ​коэффициент использования светового потока светильника (определяется по табл. 2);

Фл — ​световой поток светильника, лм (для светильников на основе четырех люминесцентных ламп мощностью 18 Вт, традиционно используемых в офисных помещениях, Фл можно принимать в диапазоне 2800–3000 лм);

Nл — ​мощность светильника, Вт.

Для чего нужно делать расчет освещенности?

Расчет количества светильников и выбор их мощности производится с целью создания комфорта для человека, находящегося в условиях искусственного освещения. Дело в том, что чрезмерно яркий свет или наоборот его недостаток вынуждают наши глаза напрягаться. Частое напряжение зрительных органов приводят к утрате зрения. Кроме того, ученые доказали, что плохое освещение негативно влияет на психоэмоциональное состояние человеческого организма.

Идеальный свет для наших глаз несут природные источники освещения (утренний, дневной и вечерний свет). Ключевой задачей проектирования систем освещения выступает создание условий, при которых искусственный свет в помещении будет максимально приближен к естественному.

Результаты преобразования электрической энергии в электромагнитное излучение воспринимается нашим зрительным органом как свет. В СНиП присутствуют правила, согласно которым подбираются осветительные приборы для различных типов помещений.

Нюансы освещения помещений

Для подсвечивания комнат ориентируются на площадь помещения, выбранную схему размещения светильников (к примеру, с люстрой и точечными светодиодными лампами) и мощность осветительных приборов. Свет должен равномерно рассеиваться по квартире или офису.

Где используется

Комбинированное освещение, по нормам охраны труда, необходимо при наличии потребности организовать на рабочих местах высокий уровень подсветки. Светильники в таком случае следует располагать в максимальной близости от рабочей поверхности. Подобное расположение имеет следующие достоинства:

  • существует возможность направлять световой поток туда, где в этом имеется наибольшая необходимость на данный момент времени;
  • имея относительно небольшую мощность, источники света будут давать высокий уровень света. Причем это возможно не только по горизонтали, но и по вертикали, а также в наклонных плоскостях;

Световой поток при местной подсветке

установка современных источников света позволяет значительно сэкономить на электроэнергии. С использованием только местной подсветки будет тратиться гораздо меньше электроэнергии, чем при общем варианте вещения.

Благодаря таким достоинствам комбинированное освещение на сегодняшний день является оптимальным выбором для превалирующего большинства помещений. Рекомендации охраны труда служат тому ярким подтверждением. Комбинируя естественное и искусственное освещение, вы сможете создать оптимальные условия для эффективной работы на предприятиях даже в ночные или утренние часы.

Опыт спорных ситуаций при расчете теплопритоков от освещения

Несмотря на то что СП 52.13330.2011 действует почти пять лет, в смежных отраслях его распространение, как показывает опыт, невелико

Дело в том, что инженеры, как правило, следят за обновлением нормативной документации по своим подсистемам и редко обращают внимание на актуализацию стандартов по смежным инженерным системам

В частности, при согласовании проекта по системам кондиционирования для одного из московских объектов заказчик выписал замечание о завышении холодильной мощности системы ввиду завышения теплопритоков, в том числе и от освещения. Какими бы малыми ни казались теплопритоки от освещения, речь шла о десятках киловатт.

При этом согласованного проекта освещения еще не было, и заказчик ссылался на устаревшие методики расчета теплопритоков. Нашей задачей в той ситуации явилось использование современной нормативной документации для обоснования правильности расчетов холодильной мощности системы кондиционирования. Использование данных из СП 52.13330.2011 оказалось наиболее убедительным аргументом.

Еще один интересный случай произошел на другом объекте, где речь также шла о завышении мощности кондиционеров, но причиной указывалось то, что часть тепла от светильников не попадает в пространство помещения, оставаясь внутри фальшпотолочного пространства. И если устроить вытяжку горячего воздуха непосредственно из-за фальшпотолка, можно существенно сэкономить на холодильной мощности на объекте.

Действительно, подобный фактор имеет место. Но не стоит забывать, что тепло выделяет не какой-либо внешний элемент светильника (пусковое устройство, например), а непосредственно лампа, та самая лампа, которая и испускает свет. И очевидно, что светильники проектируются так, чтобы свет от лампы максимально попадал в помещение. Для этого сверху ламп устанавливаются отражатели (рис. 1), которые помимо световой энергии отражают и тепло. Таким образом, фактический нагрев воздуха в фальшпотолочном пространстве не столь велик, как это может показаться изначально.

В целом же вопрос переноса тепловой энергии от светильников за потолок и ее отвод не системами кондиционирования, а системой вытяжной вентиляции — ​весьма интересная, перспективная и актуальная задача, уже имеющая ряд реальных воплощений, которая, вероятно станет темой материала в одном из ближайших выпусков журнала «Мир климата».

Способы расчёта

Их можно выделить два:

  1. По электрической мощности (в Ваттах).
  2. По световой (в Люменах).

Для каждого варианта предусмотрены свои нормы, формулы и единицы измерения. Оба имеют свои достоинства и недостатки. Рассмотрим их более детально.

Считаем в Ваттах

Этот способ рассчитать освещённость помещения самый простой, привычный, но не самый точный. Для его применения необходимы следующие данные:

Площадь находим по простой школьной формуле S=a*b. Далее, берём данные о необходимом количестве Ватт на 1 м 2 — в среднем это 20 Вт — и множим на площадь. Математически это будет выглядеть так: P=S*p, где P — общая мощность, p — номинальная для 1 м 2. Теперь можно высчитать количество лампочек в помещении. Просто делим общую мощность на этот же показатель для одной лампы. То есть, если вы хотите осветить помещение, которое требует в общем 300 Вт с помощью лампочек в 75 Вт, то: 300/75=4 — именно столько источников света вам понадобится.

Рациональное использование источников освещённости позволит улучшить атмосферу в помещении

Следует отметить, что норма 20 Вт — очень приблизительна. И чтобы повысить точность, желательно использовать отдельные показатели по каждому типу помещения:

  • гостиная — 10–35 Вт;
  • кухня — 12–40 Вт;
  • ванная комната — 10–30 Вт;
  • спальня — 10–20 Вт.

Все данные о мощностях мы умышленно привели для обычных ламп накаливания, как самых распространённых в наших краях. Производители более дорогих и в то же время экономичных видов зачастую указывают на упаковке какой по мощности лампе накаливания соответствует этот экземпляр.

Считаем в Люменах

Этот способ, с одной стороны, более точный, с другой — менее привычный. Хотя, если разобраться в единицах измерения, то ничего сложного в нём нет. Сложность заключается в том, что большинство из нас ассоциирует всё связанное с освещением с Ваттами. Но на самом деле эта единица измерения показывает лишь сколько ваша лампа потребляет электрической энергии. А сколько она при этом даёт света, её световой поток, измеряется в Люменах (Лм). В свою очередь, освещённость помещения измеряется уже в Люксах (Лк). 1 Лк равен 1 Лм на 1 м 2. Объясняем проще. Если с помощью светового потока в 1 Лм осветить поверхность площадью в 1 м 2 — такая освещённость будет равна 1 Лк.

Дальше действуем по тому же алгоритму. Берём общую площадь, множим её на необходимую освещённость для 1 квадратного метра и получаем мощность светового потока, которая нужна для освещения всего помещения. Формула почти такая же, как и раньше: P=S*E. Где S по-прежнему площадь, P — общая мощность (теперь в Лм), а E — освещённость 1 м 2 в Лк.

Помните об эффективности каждого источника освещения

Чтобы воплотить эту формулу в жизнь понадобятся нормы по освещённости того или иного типа помещения. По разным нормативным документам они составляют:

  • гостиная — 100–200 Лк;
  • кухня 150–300 Лк;
  • ванная комната — 50–200 Лк;
  • спальня — 100–200 Лк.

Осталось произвести расчёт количества светильников. Для этого общую мощность (P) делим на световой поток от одного источника (F) — n=P/F. Здесь тоже потребуются определённые цифры. А именно световая мощность разных видов ламп. Почти всегда эти сведения можно найти на упаковке. Но на всякий случай основные из них приведём и здесь:

Потребляемая мощность (Вт)

Укрупненный расчет на основе СП 52.13330.2011

В СП 52.13330.2011 нет конкретной методики расчета системы освещения, однако есть таблицы максимальных удельных мощностей искусственного освещения. По заданной освещенности и индексу помещения, который вычисляется исходя из его геометрических характеристик, определяется максимальная удельная мощность системы освещения. Остается умножить ее на площадь помещения и получить максимально допустимую нормами мощность освещения. Она же является и величиной теплопритока для системы кондиционирования.

Важно отметить, что подобный метод весьма точен, поскольку учитывает геометрию помещения — ​его форму, высоту и другие особенности. В частности, очевидно, что для помещений одной и той же длины и ширины, но разной высоты теплоприток от освещения будет выше для более высокого помещения, поскольку для обеспечения той же освещенности в нижней зоне помещения потребуются более мощные светильники

Светодиодная лампа: конструкция и основные технические характеристики

Светодиодная лампа — источник света, излучение которого осуществляется за счет использования в конструкции нескольких светодиодов, соединенных в одну цепь. В отличие от других разновидностей ламп в ней не используется вольфрамовая нить накаливания, различные газы, ртуть и другие компоненты, опасные для жизни человека. Она экологически чистое устройство, не выделяющее вредных веществ во время работы и выхода из строя. По своим энергосберегающим показателям она самая экономная среди аналогов. Может использоваться для освещения улиц, промышленных или жилых объектов и помещений.

Конструкция данной лампочки состоит из следующих элементов: рассеивателя, светодиодов, монтажной платы, радиатора, блока питания, корпуса и цоколя. Последний элемент может иметь два типоразмера патрона: Е14 (маленький) и Е27 (большой).

При выборе необходимо руководствоваться значениями основных характеристик:

  • Световой поток, измеряется в лм (люмены). Количество света, которое распространяется во всех направлениях от источника света.
  • Мощность, единица измерения Вт. Количество потребляемой энергии за единицу времени.
  • Цветовая температура свечения, единица измерения К. Определяет цвет светового потока, исходящего от источника излучения. У ламп накаливания в основном 3000К, это «теплый», желтоватый оттенок. Светодиодные источники света бывают разные, от 3000К до 6500К («холодный» цвет, с небольшой примесью синего).
  • Светоотдача, измеряется в лм/Вт. Характеристика, определяющая эффективность и экономность источника света. У изделий разных производителей, она, конечно же, разная.
  • Температура нагрева, единица измерения °C. Указывает на рабочую температуру нагрева стеклянной поверхности лампы.
  • Срок службы, измеряется в часах. Определяет максимальный срок эксплуатации в оптимальных и заявленных производителем условиях.
  • Индекс цветопередачи, CRI. Измеряется в пределах от 0 до 100 баллов. Для оптимального восприятия человеком цветопередачи от источника свет, чем больше баллов, тем выше. Нормальным считается значение 80 CRI.

Данная разновидность энергосберегающей лампочки может производиться двух типов: стандартное (грушевидная форма) и в виде «кукурузы». Этот фактор необходимо учитывать при замене источника света в светильнике. Последний вид не рекомендуется использовать, поскольку в такой конструкции светодиоды располагаются с наружной стороны.

Курс на повышение чистоты воздуха

Производственные мощности постоянно растут по всей планете, а значит, и загрязнение воздуха усиливается. Единственный выход из этой ситуации – параллельные модернизация предприятий и совершенствование технологий и мероприятий по очистке воздушного бассейна.

При этом важно помнить, что совершенствование устройств, фильтрующих воздух, не является панацеей от всех бед пылевого загрязнения. Одной меры не достаточно – подход должен быть комплексным. Советуем изучить Варианты подсветки потолка в помещениях

Советуем изучить Варианты подсветки потолка в помещениях

Например, необходимо герметизировать все оборудование, внедрять дистанционные методы управления, заменять сухие производственные процессы мокрыми и, конечно же, постоянно проводить вакуумную уборку.

Идеальное средство борьбы с пылью – внедрение замкнутых воздушных циклов, которые позволяют создавать безотходное производство. В этом случае вредные выделения не проникают в окружающую среду, а собираются для дальнейшего полезного использования. Возможность применения такой технологии имеется практически на всех типах производств.

Требования к освещению для помещений с компьютером

Для офисных помещений, где используются компьютеры, выдвигаются особые требования. Причиной является дополнительное воздействие на глаза света от монитора, которое нужно компенсировать искусственной подсветкой.

В комнатах с использованием компьютерной техники с дисплеями яркость общего света должна быть не менее 200 Лк. Если компьютеры стоят на рабочем столе, то уровень комбинированного освещения должен составлять 500/300 Лк, а искусственного — 400 Лк.

Непрерывная работа за компьютером запрещена. В дневное время максимальное время непрерывной работы составляет 2 часа. В тёмное время суток — 1 час, после чего необходимо сделать 10-15-минутный перерыв и желательно проделать упражнения для глаз.

К лампам также выдвигаются определённые требования. Коэффициент пульсации не должен быть свыше 10%, а индекс цветопередачи — не менее 80%. Таким нормам соответствуют, например, светодиодные светильники. Светодиодные лампы располагают на расстоянии 50-60 см от монитора. Их свет не должен попадать прямо на монитор или в глаза человеку. Лучше всего применять лампы с рассеянным жёлтым светом.

Правильная подсветка рабочего места обеспечивает высокую производительность труда и удовлетворённость специалистов. Соблюдая основные нормы и правила, работодатель обеспечивает своим сотрудникам комфортные условия, которые не только повышают работоспособность каждого отдельного члена коллектива, но и способствуют поддержанию здоровья.

Количество светильников и их расположение

Для нормальной безопасной работы электрических приборов рассчитывают мощность ламп, соответствие требованиям освещенности и расположению рабочих мест. Системы освещения могут иметь следующие типы:

  • общее равномерное (размещение рабочих мест не учитывается, чаще всего используется в тех случаях, когда поверхности для работы не являются стационарными), для однородности потока оно организуется очень высоко, снабжается дополнительными рефлекторами, направлено не только вниз, но на верх стен и потолок;
  • совмещение местного и общего, при котором все светильники не должны быть в поле зрения человека, иначе будет присутствовать забликованность (применяется, когда необходимо усилить освещенность в условиях точной работы);
  • общее направленное освещение (его делают для усиления освещенности конкретных участков, зная расположение всех рабочих мест).

Определение нормированного значения освещенности на рабочем месте

Даже за последние годы нормы освещенности рабочего места сильно изменились. Это связано с появлением и улучшением новых видов светильников и регулирования освещения, а также с новейшими исследованиями в сфере здоровья. Подробнее о нормах освещенности тут.

Показатели, которые нужно учитывать:

  • яркость светового потока;
  • освещенность;
  • сила света;
  • коэффициент отражения поверхности;
  • теплота цвета.

Первый показатель определяется световым ощущением человека из-за воздействия на глаза лучистой энергии

Чтобы подобрать подходящую яркость светового потока, необходимо обратить внимание на число люменов, на которые рассчитана лампа

Освещение рабочего места напрямую влияет на работоспособность

Освещенность определяется как рассеянная плотность светового потока. Она измеряется в люксах и высчитывается как отношение светового потока к площади, на которую падает освещение. В рамках гигиенических норм выделяют 8 типов помещений:

  • для чертежных работ;
  • большие по площади;
  • общего назначения (в них используются компьютеры);
  • для конференций;
  • лестницы, эскалаторы;
  • архивы, библиотеки;
  • кладовые хранилища.

Обычно осветительные приборы обладают неравномерным распределением света. Поэтому для определения освещенности нужно знать силу светового потока, направленного на освещаемую плоскость. В процессе определения освещенности важным показателем становится и коэффициент отражения, который показывает степень яркости конкретной поверхности. Он характеризуется тем, насколько светлым оказывается материал или покрытие освещаемых плоскостей, выражается в нитах и является отношением количества отраженного светового потока к общему количеству света от ламп. Стоит дополнительно учитывать освещенность от компьютера и окон.

Кроме показателей осветительных приборов, внимание уделяют самому характеру работы

В первую очередь важно определить степень травматичности и уровень точности труда. Основным фактором является минимальный размер обрабатываемых объектов

Например:

Основным фактором является минимальный размер обрабатываемых объектов. Например:

  • точки для бухгалтеров, писателей, копирайтеров и т.д.;
  • толщина самой тонкой линии для чертежников и художников;
  • наименьшие детали (транзисторы, гайки и пр.) для инженеров и других конструкторских профессий.

В местах с работой наивысшей точности освещенность может достигать 1250 Лк и зависит от того, производится ли на месте постоянная работа или она имеет периодических характер либо же только выражается в общем наблюдении за процессами.

При работе с мелкими деталями требует повышенная освещенность

Расчет освещения производственного помещения калькулятор производит по специальным таблицам с указанием необходимых коэффициентов (использования, отражения, рекомендуемого уровня освещенности) следующим образом:

  • нужно знать длину, ширину и высоту помещения;
  • учесть коэффициент отражения пола, потолка и стен;
  • отметить нормы соответствия размерам комнаты, цеха и выполняемой в них работе;
  • знать мощность, яркость светового потока лампы и ее тип (при этом учитывается безопасность использования конкретного светильника в необходимых условиях.

Источники света

В промышленных помещениях основными источниками его служат либо лампы накаливания, либо разнообразные газоразрядные приборы. У каждого из упомянутых типов — свои плюсы и минусы. У ламп накаливания, испускающих тепловое излучение, величина световой отдачи составляет 10-15 лм / Вт.

Это — источник непрерывного спектра. Больше всего в нем инфракрасных лучей, меньше всего — зеленых и синих оттенков. Поэтому различать цвета при таком освещении труднее. Недостатки этих ламп — небольшой срок службы, невысокий КПД, раскалённая поверхность колбы. Преимуществами же их являются компактность, простота, возможность эксплуатации практически в любых условиях и широкий выбор типов и мощностей.

Они могут быть вакуумными, газонаполненными и пр.

Газоразрядные лампы, которые бывают ртутными, люминесцентными, высокого давления и так далее, более экономичны. Свет, излучаемый ими, ближе к естественному. Поверхность колб у них холодная, с их помощью легче добиться высокой освещенности

Цветопередача обладает более широким спектром, что важно в промышленных условиях для определения контроля качества сырья и готовой продукции

Метод удельной мощности

Является самым простым в плане расчета. Но при этом он будет наименее точным. Здесь необходимо рассчитать мощность каждого осветительного прибора (Р). Для этого используется такая формула:

Где:

  • р — удельная мощность;
  • s — площадь комнаты;
  • N — количество осветительных приборов, развешенных в помещении.

Как видим, это формула гораздо проще, чем приведенные выше, что в определенной степени упрощает расчет. Здесь нет нужды искать дополнительные коэффициенты и рыться в справочниках. Но в этом кроется и ее главная слабость — именно поэтому, что формула не использует дополнительные коэффициенты, расчеты не дают точных результатов. Поэтому, несмотря на простоту, метод удельной мощности используют очень редко.

Коэффициент запаса

В системах искусственного освещения в течение времени эксплуатации происходит снижение освещенности в результате:

  1. спада светового потока ламп вследствие их старения (ресурс);
  2. выхода из строя ламп в течение срока эксплуатации;
  3. загрязнения оптической системы светильников;
  4. загрязнения светопропускающих поверхностей источников света;
  5. спада КПД светильников вследствие старения светоотражающих и светопропускающих (УФ воздействие на полимеры) материалов;
  6. изменения температуры окружающей среды (необходимо учитывать для светодиодов, компактных люминесцентных ламп, и люминесцентных ламп. (Раньше этот показатель в литературе не указывался, потому что эти типы источников света для улицы не допускались, а в помещении перепад температур значительно меньше).

Значения коэффициента запаса для осветительных установок искусственного освещения могут быть снижены в зависимости от эксплуатационных групп светильников. Эксплуатационная группа светильника определяется конструктивно-светотехнической схемой светильника, типом материала или покрытия отражателя и рассеивателя светильника, типом используемого источника света. 1. Светодиодные светильники производятся серийно с 2004 года. За это время практическую наработку более 6 лет имеют уже свыше 7000 серийных изделий, причем эксплуатация их продолжает сегодня.

Были проведены замеры освещенности светильников в начале эксплуатации на объектах различного применения. Применяемые в светильниках высокачественные светодиоды Nichia (Япония) не подверглись деградации и сохранили свои технические параметры, соблюдены все условия эксплуатации их в готовых изделиях. Специально разработанные конструкции светильников обеспечивают необходимый теплоотвод светодиодов, что еще существенно повышает их ресурс. Данное снижение освещенности у светодиодных светильников УСС отсутствует, это доказано практически и подтверждено исследованиями многочисленных лабораторий.

Тип лампы Параметры освещенности лк, потери
1 год 2 год 3 год
ДРЛ — 30 — 50 % — 50 -90%
ДНАТ — 20% — 10 — 30 %
Светодиодный модуль Отсутствуют Отсутствуют отсутствуют

Результаты исследований за 3 года работы 2. Практически доказано, у светодиодных светильников отсутствует выход из строя светодиодного модуля, ресурс модуля более 23 лет. Выход из строя ламп (светодиодов) в течение срока эксплуатации у светодиодных светильников отсутствует, соответственно это при расчетах учитывать не надо.

3. Загрязнение оптических систем у традиционных светильниках и у светодиодных существует. Этот параметр необходимо учитывать

Для светодиодных светильников важно качество оптического поликарбоната и оптики на светодиодах. Загрязнение пылью и грязью происходит только поликарбоната, оптика светодиодов защищена и находится под стеклом

Также есть светильники без оптики, у которых потери будут ниже. Для расчетов падения на оптических системах для светодиодных светильников следует учитывать только загрязнение защитного стекла. Опять же загрязнение зависит от места и условий эксплуатации светильников.

4. Загрязнения светопропускающих поверхностей источников света у светодиодных светильников отсутствует.

5. Спад КПД светодиодных светильников вследствие старения светоотражающих материалов отсутствует. Были произведены измерения освещенности на объектах после 3 лет работы. Параметры остались на уровне трехлетней давности, в диапазоне погрешности измерений нее более 5%.

Из данного сравнения видно, что для светодиодных светильников нужно убрать некоторые параметры падения светового потока, в следствии чего этот коэффициент уменьшится от традиционных значений.

В зарубежных нормах и стандартах для учета данного фактора используется коэффициент эксплуатации MF. С отечественным коэффициентом запаса он связан соотношением МF= 1/Кз. Из практики, для светодиодных светильников следует брать коэффициент запаса равным 1 — 1,1 для программы DIALux.

Внимание: Данный коэффициент выведен только для светильников. Для изделий других производителей светодиодных светильников, пониженный коэффициент не известен

Для определения коэффициента необходимо учитывать: токи на светодиодах (степень разгона светодиодов, если это существует); температуры кристаллов; наличие радиаторов; наличие защитного стекла; степень защиты от пыли и влаги; место эксплуатации.

Метод светового потока

Расчет методом светового потока применяется для создания комбинированного освещения в его общей реализации. Используется для горизонтальных поверхностей. Он позволяет учесть прямой световой поток, а кроме него и свет, отраженный от потолка и стен.
Для определения уровня светового потока используется такая формула:

Расшифровывается она так:

  • Е – нормируемая освещенность;
  • S — площадь освещаемой комнаты;
  • k — коэффициент запаса. Он учитывает падение уровня светового потока вследствие загрязнения/старения осветительного прибора;
  • N — число светильников;
  • n — число ламп в осветительном приборе;
  • η — коэффициент применения светового потока.

Коэффициенты берутся из таблиц.
Показатель помещения определяют по формуле:

Здесь:

  • а и b — длина и ширина помещения;
  • һ — высота светильника, расположенного над рабочей поверхностью.

Получив конечную цифру по первой формуле, сравниваем ее с таблицей, определяя остальные показатели (мощность системы и т.д.). Эти нормы предписывает охрана труда.
Данный метод считается самым сложным, так как требует использования нескольких табличных коэффициентов, на поиск которых может уйти некоторое количество сил и времени. Но зато вы получаете точное значение, с помощью которого можно определить оптимальный уровень света для расчетного пространства.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий